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Abstract

Automatic facial action unit (AU) recognition is used
widely in facial expression analysis. Most existing
AU recognition systems aim for cross-participant non-
calibrated generalization (NCG) to unseen faces without
further calibration. However, due to the diversity of facial
attributes across different identities, accurately inferring
AU activation from single images of an unseen face is some-
times infeasible, even for human experts—it is crucial to
first understand how the face appears in its neutral expres-
sion, or significant bias may be incurred. Therefore, we pro-
pose to perform one-frame calibration (OFC) in AU recog-
nition: for each face, a single image of its neutral expres-
sion is used as the reference image for calibration. With this
strategy, we develop a Calibrating Siamese Network (CSN)
for AU recognition and demonstrate its remarkable effec-
tiveness with a simple iResNet-50 (IR50) backbone. On the
DISFA, DISFA+, and UNBC-McMaster datasets, we show
that our OFC CSN-IR50 model (a) substantially improves
the performance of IR50 by mitigating facial attribute bi-
ases (including biases due to wrinkles, eyebrow positions,
facial hair, etc.), (b) substantially outperforms the naive
OFC method of baseline subtraction as well as (c) a fine-
tuned version of this naive OFC method, and (d) also out-
performs state-of-the-art NCG models for both AU intensity
estimation and AU detection.

1 Introduction

Facial expression analysis is important for understanding
human emotions and behaviors across various fields, includ-
ing human-computer interaction, psychology, and security.
The Facial Action Coding System (FACS) is a comprehen-
sive system for describing human facial movement devel-
oped by Ekman and Friesen [10], widely recognized and ex-
tensively used in facial expression analysis for its ability to
describe facial movement objectively and systematically. It
breaks down facial expressions into individual components

of muscle movement, called action units (AUs). Table 1
introduces the primary AUs analyzed in this paper.

AU1 Inner Brow Raiser AU12 Lip Corner Puller
AU2 Outer Brow Raiser AU15 Lip Corner Depressor
AU4 Brow Lowerer AU17 Chin Raiser
AU5 Upper Lid Raiser AU20 Lip Stretcher
AU6 Cheek Raiser AU25 Lips Part
AU9 Nose Wrinkler AU26 Jaw Drop

Table 1. Names of the primary AUs analyzed in the paper.

As manual AU coding is expensive and time-consuming,
automatic AU recognition is used widely in facial expres-
sion analysis. Most existing AU recognition systems aim
for cross-participant non-calibrated generalization (NCG)
to unseen faces [2, 13, 18, 29, 41, 46], where individual
images/frames of the faces are fed into the trained model
as input for AU recognition. However, due to the diversity
of facial attributes across different identities, accurately in-
ferring AU activation from single images of an unseen face
is sometimes infeasible, even for human experts—it is cru-
cial to first understand how the face appears in its neutral
expression, or significant bias may be incurred. In the offi-
cial FACS manual [11], the importance of taking the face’s
neutral appearance into account as the baseline is repeat-
edly emphasized for human scoring of various AUs. Firstly,
without understanding the neutral appearance, permanent
facial features (e.g. wrinkles, bulges, pouches) may be
misidentified as evidence for AU activation. Secondly, scor-
ing of many AUs is dependent upon the neutral appearance:
for example, scoring of AU5 (upper lid raiser) is dependent
upon whether the iris shows entirely in the neutral face or is
partially covered; scoring of AU15 (lip corner depressor) is
dependent upon whether the lip line is straight, slightly up,
or slightly down in neutral.

Without face-specific calibration, automatic AU recog-
nition systems would suffer from similar facial attribute bi-
ases for faces not seen in the training set. Therefore, we pro-
pose to perform one-frame calibration (OFC) in AU recog-
nition: for each face, a single image of its neutral expres-
sion is used as the reference image for calibration. The
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Figure 1. The CSN-IR50 network architecture. The example reference image and target image are from the DISFA dataset.

most intuitive OFC method would be to directly subtract
the model’s estimations of AUs in the neutral image from
its AU estimations of all images of the same face. How-
ever, we show that the performance improvement from this
method, if any, is limited. We propose a highly effective
neural network architecture for OFC—Calibrating Siamese
Network (CSN), where the reference image (the neutral
face) and the target image are fed into two identical net-
works and joined in an intermediate stage of the network
by computing the difference between their feature maps of
that stage. In this paper, we demonstrate its remarkable ef-
fectiveness with a simple iResNet-50 (IR50) backbone. On
the DISFA [23, 24], DISFA+ [22], and UNBC-McMaster
[19] datasets, we show that our OFC CSN-IR50 model (a)
significantly improves the performance of IR50 by mitigat-
ing facial attribute biases, (b) substantially outperforms the
naive OFC method of baseline subtraction (BS) as well as
(c) a fine-tuned version of this naive OFC method, and (d)
also outperforms state-of-the-art (SOTA) NCG models.

2 Related Work

2.1 Bias in Facial Expression Recognition

Previous studies have shown that facial expression recog-
nition systems can exhibit biases across groups based on
gender [9], race [28], age [15], among others [7, 14], rais-
ing significant attention and concerns about the fairness of
these systems. Due to the objectiveness of FACS by defini-
tion, some researchers believe AU recognition is less sub-
ject to bias and use it to investigate and mitigate bias in fa-
cial emotion annotation [6] and recognition [12, 33]. How-
ever, it was shown that AU recognition is also subject to
bias, which researchers have developed methods to mitigate
[7, 14].

Although group-based biases attract more attention, they

are essentially specific manifestations of the broader is-
sue of identity bias in facial expression recognition. Re-
searchers have proposed two methods of addressing identity
bias, either to develop identity-aware/personalized models
for facial expression recognition [25, 36, 39, 42] or to apply
adversarial training with respect to identities on the mod-
els to encourage them to disregard identity-related features
[45].

2.2 Siamese Neural Network

The Siamese Neural Network was first introduced by Brom-
ley et al. [3] and has been widely applied in facial identity-
related tasks, such as face verification [34] and face recog-
nition [40].

3 Methods

3.1 One-Frame Calibration

While most existing AU recognition systems aim for cross-
participant non-calibrated generalization (NCG) to unseen
faces, it is crucial to take the face’s neutral appearance into
account in AU coding. Thus, we propose one-frame cali-
bration (OFC) for AU recognition: for each face, a single
image of its neutral expression is used as the reference im-
age for calibration.

In offline benchmarking, OFC primarily applies to video
datasets. The selection of the reference image is achieved
by manually selecting one image from all frames with zero
activation of annotated AUs for each face. The aim of man-
ual selection is to ensure that in the selected reference im-
age, (a) the unannotated AUs are also not activated or only
minimally activated, and (b) the face is at an appropriate
angle and not partially occluded.

In real-life applications of AU recognition systems, the
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ideal method of selecting the reference image for OFC is to
directly ask the user to pose a neutral face before usage.

3.2 Calibrating Siamese Network for OFC
We propose the Calibrating Siamese Network (CSN) archi-
tecture for OFC. The input for CSN consists of the target
image for AU recognition and the reference image. The
two images are fed into two identical networks with shared
weights and joined in an intermediate stage of the network
by computing the difference between their feature maps.

This architecture design can be integrated with a variety
of model designs for AU recognition. To demonstrate its
effectiveness in a simple way, we use the classical iResNet-
50 (IR50) as the backbone in this work and name it CSN-
IR50.

3.2.1 CSN-IR50

Figure 1 illustrates the architecture of CSN-IR50. The ref-
erence image with a neutral expression and the target im-
age for AU recognition are fed into two identical IR50 net-
works with shared weights; just before reaching stage 4 of
the network, the difference between their feature maps is
computed and then fed into the rest of the IR50 network
until the AU intensities are outputted.

CSN-IR50 may be more precisely called CSN-IR50-
Stage4, emphasizing stage 4 as the merge point, which is
the main version of CSN-IR50 we primarily investigate in
this work. Stage 4 is selected as the merge point because the
feature maps in this stage capture high-level abstractions
of the face features and still retain the fine-grained infor-
mation. We will also compare it with other versions, in-
cluding CSN-IR50-Stage1, CSN-IR50-Stage2, CSN-IR50-
Stage3, CSN-IR50-FC, and CSN-IR50-Output.

3.3 Baseline Models
We compare the performance of our proposed method with
those of various models. Firstly, we directly compare our
method of OFC with CSN-IR50 with the vanilla NCG with
IR50 to demonstrate the effectiveness of OFC. Secondly, we
compare our model with the naive OFC method of baseline
subtraction (BS) (IR50 OFC w/ BS) to demonstrate the su-
periority of our model as an OFC method. (Table 6 shows
a comparison with CSN-IR50-Output, which is a fine-tuned
version of this naive method (fine-tuned with same param-
eters as CSN-IR50)). Additionally, we also compare our
model performance with that of other SOTA NCG models.

3.3.1 IR50 (NCG)

In IR50 (NCG), the IR50 is trained on individual images
of the training set and directly applied to images of unseen

faces during validation.

3.3.2 IR50 (OFC w/ BS)

In IR50 (OFC w/ BS), the IR50 is trained on individual im-
ages of the training set; however, during validation, its out-
put on the reference image for each face is used as the base-
line, which is subtracted from outputs on all images of the
same face to produce final predictions.

4 Experiments

4.1 Datasets and Settings

DISFA [24] contains left-view and right-view facial video
recordings of 27 participants with approximately 130,000
frames in total for each view. Each frame is annotated with
intensities of 12 AUs on a scale of 0 to 5. Following previ-
ous studies, we perform participant-exclusive 3-fold cross-
validation on DISFA.

DISFA+ [22] is an extension of the DISFA dataset. It
contains facial video recordings of 9 participants’ posed and
spontaneous facial expression with each frame being anno-
tated with the same 12 AUs on a scale of 0 to 5. We perform
leave-one-participant-out cross-validation on DISFA+.

UNBC-McMaster [19] is a dataset originally collected
for pain detection. Since it also contains frame-level AU
intensity annotations of 10 AUs on a scale of 0 to 5 (except
that the annotations for AU43 (eye closure) are binary), it
is also appropriate for analyzing AU recognition methods.
It contains facial video recordings of 25 participants with
48,398 frames in total. We perform participant-exclusive
5-fold cross-validation on UNBC-McMaster.

We did not include the widely used BP4D [43] dataset
because it is not appropriate for OFC. Unlike the previous
mentioned datasets, in BP4D, FACS coders selectively an-
notate a 20-second segment with the highest density of fa-
cial expression for each recording session, and only these
segments are released in the dataset. Consequently, for most
participants in BP4D, there is no appropriate “neutral face
frame” to use as the reference image for OFC.

We evaluate our methods on both AU intensity estima-
tion and AU detection. In AU intensity estimation, the
model outputs estimations of intensities of the AUs (real
values between 0 to 5). In AU detection, the model outputs
predictions of whether each AU occurs in binary format (0
or 1). Following previous studies [30], for AU detection, we
consider AU intensities greater or equal to 2 as occurrences,
and we only include 8 of the 12 AUs for DISFA.

3



Metric Method AU Average1 2 4 5 6 9 12 15 17 20 25 26

ICC(3,1)↑

CCNN-IT [37] .18 .15 .61 .07 .65 .55 .82 .44 .37 .28 .77 .54 .45
2DC [17] .70 .55 .69 .05 .59 .57 .88 .32 .10 .08 .90 .50 .50

SCC-Heatmap [13] .73 .44 .74 .06 .27 .51 .71 .04 .37 .04 .94 .78 .47
iARL [30] .13 .36 .68 .22 .56 .36 .86 .52 .37 .12 .96 .60 .48

IR50 (NCG) .53 .45 .75 .62 .55 .57 .84 .42 .47 .24 .93 .65 .59
IR50 (OFC w/ BS) .62 .51 .75 .55 .60 .59 .82 .39 .44 .20 .93 .68 .59
CSN-IR50 (OFC) .75 .70 .80 .72 .67 .61 .85 .33 .52 .37 .94 .77 .67

MAE↓

CCNN-IT [37] 87 .63 .86 .26 .73 .57 .55 .38 .57 .45 .81 .64 .61
SCC-Heatmap [13] .16 .16 .27 .03 .25 .13 .32 .15 .20 .09 .30 .32 .20

iARL [30] .30 .31 .52 .04 .36 .30 .31 .05 .33 .08 .29 .26 .26
IR50 (NCG) .37 .39 .44 .11 .35 .21 .34 .20 .39 .21 .32 .42 .31

IR50 (OFC w/ BS) .30 .36 .41 .14 .33 .20 .40 .18 .37 .31 .34 .38 .31
CSN-IR50 (OFC) .19 .16 .38 .08 .26 .19 .31 .17 .22 .13 .27 .27 .22

Table 2. The performance of different methods on AU intensity estimation on the DISFA dataset. For each metric, the best results in each
column are shown in bold. The rows below the dashed lines in each section include the three methods we propose for comparison; the best
results among them are underlined.

4.2 Implementation Details
Each frame is preprocessed with face detection [20], face
alignment [5], and a combination of histogram equalization
and linear mapping [16] for both training and validation.

We use the weights pre-trained on Glink360k [1, 8] for
both IR50 and CSN-IR50, and the last layer of the network
is modified to adapt to the output format for the AU recog-
nition task.

For AU intensity estimation, we train the network to per-
form both regression and ordinal classification [26] on the
AU intensities. The network outputs the estimation of the
AUs in two formats: for estimating the intensity of the ith
AU yi, it outputs 1 value ŷi,reg representing the numeri-
cal estimation of the AU intensity (in the format of regres-
sion) and 5 values σ(ŷi,class(1)), σ(ŷi,class(2)), σ(ŷi,class(3)),
σ(ŷi,class(4)), and σ(ŷi,class(5)) respectively representing
the estimated probability of the AU intensity being higher
than or equal to 1, 2, 3, 4, and 5 (in the format of binary
classifications). The loss function consists of three parts:

EAUIE = Ereg,MSE + Ereg,cos + Eclass, (1)

where Ereg,MSE, Ereg,cos, and Eclass respectively represent
a mean squared error (MSE) loss for the numerical estima-
tions

Ereg,MSE = Σn
i=1wi,yi

(yi − ŷi,reg)
2, (2)

a cosine similarity loss for the numerical estimations

Ereg,cos = 1− Σn
i=1yiŷi,reg

(Σn
i=1y

2
i )(Σ

n
i=1ŷ

2
i,reg)

, (3)

and a cross entropy loss for the binary classification estima-
tions

Eclass = Σn
i=1Σ

5
j=1wi,j,χyi≥j

CE(χyi≥j , σ(ŷi,class(j))),
(4)

with the cross entropy function being

CE(y, ŷ) = −[yi log(ŷi) + (1− yi) log(1− ŷi)]. (5)

The weights for the MSE loss and those for the cross en-
tropy loss are both inverse-frequency weighted and nor-
malized within each AU for addressing class imbalance in
the datasets (substantially higher number of occurrences for
low AU intensities). However, since the number of occur-
rences of high intensities are too few for most AUs (result-
ing in too high weights for the MSE loss if used directly),
we “bin” the intensities into 2 groups, and each group shares
the same weight. Specifically, for the MSE loss, we apply
one weight for occurrences of intensities of 0 and 1 and an-
other weight for occurrences of intensities of 2, 3, 4, and 5,
and these weights are computed based on the total number
of occurrences within each intensity group.

Notably, although we train the network to learn both nu-
merical estimations and binary classification estimations of
the AU intensities, only the numerical estimations are used
in model validation (and any further model inference).

For AU detection, we train the network to directly out-
put the estimated probability of the occurrence of each AU
σ(ŷi), with an occurrence defined as yi ≥ 2. The loss func-
tion uses cross entropy loss:

EAUD = Σn
i=1wi,χyi≥2

CE(χyi≥2, σ(ŷi)), (6)

with similar inverse-frequency weights normalized within
each AU. The detailed equations for weight computation in
both AU intensity estimation and AU detection are provided
in the technical appendix.

For model training, we employ the Adam optimizer with
an initial learning rate of 10−4 for parameters of the last
layer and an 10−5 for other parameters, a weight decay of
5 × 10−4, and a batch size of 64. These hyperparameters
were selected based on our prior work on other models for
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AU recognition. For each fold of each dataset, we train each
model for 3 epochs with the random seed 42 in a single run
using PyTorch version 2.0.0 in Python version 3.9.7, as ini-
tial exploration showed that, with the pre-trained weights,
performance does not significantly change after the first
epoch. For all training/validation on DISFA, we used single
NVIDIA GeForce GTX 1080Ti 11G GPUs and an Intel®

CoreTM i9-7900X CPU with 128 GB RAM; for all train-
ing/validation on DISFA+ and UNBC-McMaster, we used
single NVIDIA RTX A6000 GPUs and dual AMD EPYC
7302 CPUs with a 512 GB 16-core 8-channel RAM.

4.3 Results of CSN-IR50
4.3.1 Main Results

Table 2 reports the performance of CSN-IR50 on AU in-
tensity estimation on DISFA in comparison to other meth-
ods. Firstly, CSN substantially improves the performance
of IR50 for NCG and also greatly outperforms the naive
OFC method of IR50 with BS, with a difference of 0.08
in ICC(3,1) and a difference of 0.09 in Mean Absolute
Error (MAE). Secondly, in comparison to other SOTA
NCG methods, our CSN-IR50 demonstrates a substantially
higher ICC(3,1) of 0.67 and a near-best MAE of 0.22 (the
best being 0.20). ICC(3,1) measures the consistency be-
tween the model estimations and the human expert labels
in the dataset. We believe ICC(3,1) is a better metric here
because of the high imbalance of DISFA.

Table 3 reports the performance of CSN-IR50 on AU de-
tection on DISFA in comparison to other models. Firstly,
it again substantially improves the performance of IR50 for
NCG and outperforms the naive OFC method of IR50 with
BS1 in both F1 score and accuracy. Secondly, in comparison
to other SOTA NCG methods, our CSN-IR50 demonstrates
a higher F1 score and equal-to-best accuracy of 94.1.

Note that the comparison between our CSN-IR50 and
other SOTA models here is not an apples to apples compar-
ison because CSN-IR50 is for OFC while the SOTA models
are for NCG. However, also note that the effectiveness of
our proposed CSN architecture is demonstrated only using
the simple IR50 as the backbone for simplicity in our pa-
per, and we believe the CSN architecture design has great
potential to be integrated with more complicated, advanced
backbone models for AU recognition to achieve higher per-
formance.

1IR50 (OFC w/ BS) has substantially worse performance than other
methods because baseline subtraction is intrinsically not appropriate for
outputting AU occurrences in binary format. The IR50 network output for
a neutral face is supposed to be very close to that for the reference image,
either slightly higher and slightly lower. Thus, after baseline subtraction,
the final output might be either a small positive or a small negative. When
it is a small positive, it would be considered as high consistency in AU
intensity estimation but would be considered as a false positive in AU de-
tection.

As shown in Table 4, our CSN-IR50 demonstrates simi-
lar superiority over IR50 (NCG) and IR50 (OFC w/ BS) on
the DISFA+ and UNBC-McMaster datasets. No results of
other methods are shown because both of them have been
hardly used for evaluating recent SOTA AU recognition
models.

4.3.2 The Advantage of OFC with CSN

One interesting question is how/why OFC with CSN-IR50
outperforms the vanilla IR50. Two important observations
provide insights into this question.

Firstly, Table 5 compares within-participant ICC(3,1) av-
eraged over all participants and across-participant ICC(3,1)
between different methods on AU intensity estimation
on DISFA, DISFA+, and UNBC-McMaster. Within-
participant ICC(3,1) only measures the consistency between
the model estimations and human expert labels within indi-
vidual participants; across-participant ICC(3,1) is the ver-
sion used everywhere else in this paper, as it measures the
consistency not only within but also across participants and
thus more insightfully captures bias across different partici-
pants. As shown in Table 5, although our CSN-IR50 greatly
improves the across-participant ICC(3,1) of IR50, its im-
provement in within-participant ICC(3,1) is much more
modest. This suggests that the primary advantage of OFC
with CSN-IR50 lies in its ability to calibrate for diverse fa-
cial attributes across different identities, which aligns with
our original intent for CSN.

The comparison of precision and recall in Table 3 of-
fers further insights into how the calibration is achieved:
the CSN architecture generally increases precision while
decreasing recall for most AUs. In other words, the CSN
architecture substantially reduces the misidentification of
non-activated AUs as activated (false positives), although
this improvement comes with the cost of missing some ac-
tual AU activations (false negatives).

This reduction of false positives is achieved through mit-
igating facial attribute biases. More specifically, without
face-specific calibration, some facial attributes are easily
misidentified as AU activations, and our CSN addresses
this issue. See Figure 2 for a variety of case examples.
In Figure 2a, IR50 tends to overestimate AU1 (inner brow
raiser) intensities due to the participant’s wider eyebrow-to-
eye distances, because AU1 produces wider distances be-
tween eyebrows and eyes; in Figure 2b, IR50 tends to over-
estimate AU4 (brow lowerer) intensities due to the partici-
pant’s slight permanent wrinkle at the root of the nose, be-
cause AU4 may produce horizontal wrinkles at the root of
the nose; in Figure 2c, IR50 tends to misidentify the bridge
of eyeglasses as wrinkles caused by AU9 (nose wrinkler)
activation, because AU9 produces wrinkles at the root of
the nose; in Figure 2d; IR50 tends to misidentify the facial
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Metric Method AU Average1 2 4 6 9 12 25 26

F1 score↑

ARL [30] 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7
UGN-B [32] 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0
JÂA-Net [31] 62.4 60.7 67.1 41.1 45.1 73.5 90.9 67.4 63.5

PIAP [35] 50.2 51.8 71.9 50.6 54.5 79.7 94.1 57.2 63.8
ME-GraphAU [21] 54.6 47.1 72.9 54.0 55.7 76.7 91.1 53.0 63.1

KDSRL [4] 60.4 59.2 67.5 52.7 51.5 76.1 91.3 57.7 64.5
CLEF [44] 64.3 61.8 68.4 49.0 55.2 72.9 89.9 57.0 64.8
SACL [18] 62.0 65.7 74.5 53.2 43.1 76.9 95.6 53.1 65.5
MDHR [38] 65.4 60.2 75.2 50.2 52.4 74.3 93.7 58.2 66.2
IR50 (NCG) 35.4 33.0 64.4 48.6 51.8 77.1 91.9 58.1 57.5

IR50 (OFC w/ BS) 16.3 17.4 36.1 21.1 11.5 39.1 61.8 26.6 28.7
CSN-IR50 (OFC) 65.3 58.3 70.8 52.6 51.7 77.3 94.6 65.4 67.0

Accuracy↑

ARL [30] 92.1 92.7 88.5 91.6 95.9 93.9 97.3 94.3 93.3
UGN-B [32] 95.1 93.2 88.5 93.2 96.8 93.4 94.8 93.8 93.4
JÂA-Net [31] 97.0 97.3 88.0 92.1 95.6 92.3 94.9 94.8 94.0

SACL [18] 96.1 96.9 92.5 91.7 95.0 93.7 97.5 89.1 94.1
IR50 (NCG) 87.1 87.1 86.8 89.5 95.5 93.2 95.3 89.6 90.5

IR50 (OFC w/ BS) 50.5 62.5 46.3 42.3 37.2 60.1 65.8 55.5 52.5
CSN-IR50 (OFC) 96.9 96.9 90.4 91.7 94.6 93.5 96.9 92.8 94.2

Precision↑ IR50 (NCG) 23.6 21.2 54.8 39.7 46.8 67.9 89.0 45.0 48.5
CSN-IR50 (OFC) 73.1 69.1 65.7 47.7 41.2 70.1 92.5 56.9 64.5

Recall↑ IR50 (NCG) 71.0 73.9 78.0 62.6 58.1 89.2 94.9 81.8 76.2
CSN-IR50 (OFC) 59.0 50.4 76.8 58.7 69.5 86.3 96.8 76.8 71.8

Table 3. The performance of different methods on AU detection on the DISFA dataset. For each metric, the best results in each column are
shown in bold. The rows below the dashed lines in each of the F1 score and accuracy sections include the three methods we propose for
comparison; the best results among them are underlined. For precision and recall, the better results between IR50 (NCG) and CSN-IR50
(OFC) are also underlined.

Method AU Intensity Estimation AU Detection
ICC(3,1)↑ MAE↓ F1↑ Accuracy↑

DISFA+
IR50 (NCG) .81 .37 67.3 91.7

IR50 (OFC w/ BS) .83 .32 28.3 47.4
CSN-IR50 (OFC) .86 .23 78.6 96.2

UNBC-McMaster
IR50 (NCG) .30 .29 25.9 93.3

IR50 (OFC w/ BS) .34 .23 9.2 36.1
CSN-IR50 (OFC) .45 .20 34.2 95.9

Table 4. Performance of different methods on the DISFA+ and
UNBC-McMaster datasets. The results shown here are all average
values across all AUs. The best results in each column are under-
lined.

hair as wrinkles caused by AU17 (chin raiser) activation,
because AU17 produces wrinkles on the chin boss. Interest-
ingly, the first two examples are issues human FACS coders
may also face without a neutral reference, while the latter
two examples are facial attribute misidentification problems
specific to machine learning models, partially due to insuf-
ficient training data, a limitation common in AU datasets.
CSN-IR50, effectively addresses these issues by calibrating
the AU estimations of different faces based on their neutral
appearances.

Method Across-Participant
ICC(3,1)↑

Within-Participant
ICC(3,1)↑

DISFA
IR50 (NCG) .59 .51

CSN-IR50 (OFC) .67 .53
DISFA+

IR50 (NCG) .81 .84
CSN-IR50 (OFC) .86 .85

UNBC-McMaster
IR50 (NCG) .30 .22

CSN-IR50 (OFC) .45 .26

Table 5. Comparison of within-participant ICC(3,1) averaged
across all participants and across-participant ICC(3,1) between
different methods on AU intensity estimation. (The across-
participant ICC(3,1) is what we use everywhere else, as it more
insightfully captures bias across different participants.) The re-
sults shown here are all average values across all AUs. The best
results in each column are underlined.

4.3.3 Comparing Different Versions of CSN-IR50

The CSN-IR50 we have presented so far is our main ver-
sion, CSN-IR50-Stage4, in which the two networks for the
reference image and the target image respectively merge
just before stage 4 of IR50 (see Figure 1). Table 6 compares
it with other versions of CSN-IR50 with different merge
points on DISFA. (Each version is named after the first
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(a) CSN-IR50 (OFC) mitigates bias in AU1 (inner brow raiser) intensity estimation due to wider eyebrow-to-eye distances.
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(b) CSN-IR50 (OFC) mitigates bias in AU4 (brow lowerer) intensity estimation due to the wrinkle.
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(c) CSN-IR50 (OFC) mitigates bias in AU9 (nose wrinkler) intensity estimation due to the bridge of eyeglasses.
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(d) CSN-IR50 (OFC) mitigates bias in AU17 (chin raiser) intensity estimation due to the facial hair.

Figure 2. Examples of CSN-IR50 mitigating facial attribute biases in AU intensity estimation. In each subfigure, the left panel is the
(preprocessed) reference image of the specific participant, and the right panel is the comparison between AU intensities estimated by IR50
(NCG) and CSN-IR50 (OFC) and the human expert labeled intensities in the dataset. All examples are from the left-view videos of the
DISFA dataset.

module after the merge point.) We can see that our selected
merge point, stage 4, is the optimal one providing the best
performance. Merging at earlier stages (CSN-IR50-Stage1,
CSN-IR50-Stage2, and CSN-IR50-Stage3) provides some-
what suboptimal performances but still outperforms the
IR50 baselines. We believe these versions suffer from in-
sufficient processing of individual faces before the merge
but still benefit from calibration with the neutral refer-
ence. On the other hand, merging later just before the fully
connected layer (CSN-IR50-FC) or directly computing the
difference between the output AU estimations of the two
networks (CSN-IR50-Output) provides substantially worse
performance possibly because the more fine-grained infor-
mation is already lost at that stage. Note CSN-IR50-Output
is the fine-tuned version of our naive baseline OFC method

(IR50 (OFC w/ BS)). Fine-tuning seems to have a small ef-
fect on this method, slightly improving MAE but reducing
ICC(3,1) on AU intensity estimation and slightly improving
F1 and accuracy on AU detection on DISFA. Performance is
much worse than our CSN-IR50-Stage4 model, which only
differs in where the merging (difference computation) takes
place.

4.3.4 Full Results

For the results presented in Tables 4 to 6, the full versions
including individual values for each AU are in the supple-
mentary material (see Tables S1 to S9).
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Method AU Intensity Estimation AU Detection
ICC(3,1)↑ MAE↓ F1↑ Accuracy↑

CSN-IR50-Stage1 .61 .31 60.8 92.0
CSN-IR50-Stage2 .63 .29 65.2 93.3
CSN-IR50-Stage3 .66 .26 62.4 92.5
CSN-IR50-Stage4 .67 .22 67.0 94.2

CSN-IR50-FC .55 .28 30.9 60.3
CSN-IR50-Output .54 .28 29.9 58.5

Table 6. Performance of different versions of CSN-IR50 on AU
intensity estimation and detection on the DISFA datasets. The
suffix indicates where the two networks in CSN-IR50 merge; for
example, CSN-IR50-Stage4 means that the two network merges
(by computing their difference) just before stage 4 of IR50. The
boxed CSN-IR50-Stage4 is the main version we use in the rest of
the paper (and shown in Figure 1). The results shown here are all
average values across all AUs. The best results in each column are
underlined.

5 Discussion and Conclusion
In this paper, we propose to perform OFC in AU recog-
nition for better generalizing the model to unseen faces
and a CSN architecture design for OFC. For simplicity,
we demonstrate the effectiveness of the CSN architecture
with an IR50 backbone. On the DISFA, DISFA+, and
UNBC-McMaster datasets, we show that our OFC CSN-
IR50 model (a) substantially outperforms the performance
of IR50 with NCG, (b) substantially outperforms IR50 with
the naive OFC method of BS, as well as (c) the fine-tuned
version of this method we call CSN-IR50-Output (note that
it only differs from our model in where the merging takes
place), and (d) also outperforms SOTA NCG models for
both AU intensity estimation and AU detection. With fur-
ther analysis, we show that the superiority of OFC with
CSN-IR50 lies in its ability to calibrate for diverse facial
attributes across different identities. Specifically, it substan-
tially reduce false positives in AU recognition, albeit at the
cost of increasing false negatives. With case examples, we
demonstrate how the reduction of false positives is achieved
through mitigating overestimation and misidentification of
AUs due to various facial attribute biases, including eye-
brow locations, wrinkles, eyeglasses, and facial hair.

One important note is that, while comparison with CSN-
IR50-Output and IR50 (OFC w/ BS) is fair and shows large
performance improvement, the comparison between our
CSN-IR50 and other SOTA models is not an apples to ap-
ples comparison because CSN-IR50 is for OFC, enhanced
with one important labeled frame of neutral expression from
each participant in the validation set, while the SOTA mod-
els are for NCG. However, also note that the effectiveness of
our proposed CSN architecture is demonstrated only using
the simple IR50 as the backbone for simplicity in our paper.
Additionally, CSN is not a replacement for existing NCG
AU recognition models; rather, it is an augmentation that

can be integrated with any existing model. Therefore, as an
important future direction, we believe that our CSN archi-
tecture design has great potential to be integrated with more
complicated, advanced backbone models for AU recogni-
tion to achieve higher performance.

Admittedly, OFC has limitations in real-life applications
because of its reliance on a good reference image—a neu-
tral face at an appropriate angle and not partially occluded.
The ideal method of selecting the reference image is to di-
rectly asking the user to pose a neutral face before using
the system. Despite its great accuracy and efficiency, this
method only applies to scenarios where the user willingly
uses the system with full awareness (which includes a wide
range of applications, such as healthcare, education, and en-
tertainment). One potential solution for other scenarios is to
develop a method to automatically select a good reference
image from real-time video streaming, which would also be
an interesting future direction to explore.

In conclusion, we propose to perform OFC with a novel
CSN architecture design for AU recognition and demon-
strate its remarkable effectiveness with a simple IR50 back-
bone. We also believe it has great potential to be inte-
grated with better backbone models to achieve higher per-
formance.

6 Acknowledgements
We thank Xiaojing Xu and Yuan Tang for help-
ful prior work. We are grateful for support from
NSF IIS 1817226 and IIS 2208362 and seed fund-
ing from UC San Diego Social Sciences and the
Sanford Institute for Empathy and Compassion as
well as hardware funding from NVIDIA, Adobe, and
Sony.

References
[1] Xiang An, Jiankang Deng, Jia Guo, Ziyong Feng, XuHan

Zhu, Jing Yang, and Tongliang Liu. Killing two birds with
one stone: Efficient and robust training of face recognition
CNNs by partial FC. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4042–4051, 2022. 4
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JÂA-Net: joint facial action unit detection and face align-
ment via adaptive attention. International Journal of Com-
puter Vision, 129:321–340, 2021. 6

[32] Tengfei Song, Lisha Chen, Wenming Zheng, and Qiang Ji.
Uncertain graph neural networks for facial action unit detec-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 5993–6001, 2021. 6

[33] Varsha Suresh and Desmond C Ong. Using positive match-
ing contrastive loss with facial action units to mitigate bias
in facial expression recognition. In 2022 10th International
Conference on Affective Computing and Intelligent Interac-
tion (ACII), pages 1–8. IEEE, 2022. 2

[34] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior
Wolf. Deepface: Closing the gap to human-level perfor-
mance in face verification. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1701–1708, 2014. 2

[35] Yang Tang, Wangding Zeng, Dafei Zhao, and Honggang
Zhang. PIAP-DF: Pixel-interested and anti person-specific
facial action unit detection net with discrete feedback learn-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 12899–12908, 2021. 6

[36] Cheng-Hao Tu, Chih-Yuan Yang, and Jane Yung-jen Hsu.
Idennet: Identity-aware facial action unit detection. In 2019
14th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2019), pages 1–8. IEEE, 2019. 2

[37] Robert Walecki, Vladimir Pavlovic, Björn Schuller, Maja
Pantic, et al. Deep structured learning for facial action unit
intensity estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3405–
3414, 2017. 4

[38] Zihan Wang, Siyang Song, Cheng Luo, Songhe Deng, We-
icheng Xie, and Linlin Shen. Multi-scale dynamic and hier-
archical relationship modeling for facial action units recog-
nition. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1270–1280,
2024. 6

[39] Xiaojing Xu and Virginia R de Sa. Personalized pain detec-
tion in facial video with uncertainty estimation. In Interna-
tional Conference of the IEEE Engineering in Medicine &
Biology Society, pages 4163–4168. IEEE, 2021. 2

[40] Jiaolong Yang, Peiran Ren, Dongqing Zhang, Dong Chen,
Fang Wen, Hongdong Li, and Gang Hua. Neural aggrega-
tion network for video face recognition. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4362–4371, 2017. 2

[41] Kaishen Yuan, Zitong Yu, Xin Liu, Weicheng Xie, Huan-
jing Yue, and Jingyu Yang. AUformer: Vision transform-
ers are parameter-efficient facial action unit detectors. arXiv
preprint arXiv:2403.04697, 2024. 1

[42] Haifeng Zhang, Wen Su, Jun Yu, and Zengfu Wang.
Identity–expression dual branch network for facial expres-
sion recognition. IEEE transactions on cognitive and devel-
opmental systems, 13(4):898–911, 2020. 2

[43] Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Canavan,
Michael Reale, Andy Horowitz, Peng Liu, and Jeffrey M Gi-
rard. BP4D-spontaneous: a high-resolution spontaneous 3d

dynamic facial expression database. Image and Vision Com-
puting, 32(10):692–706, 2014. 3

[44] Xiang Zhang, Taoyue Wang, Xiaotian Li, Huiyuan Yang,
and Lijun Yin. Weakly-supervised text-driven contrastive
learning for facial behavior understanding. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 20751–20762, 2023. 6

[45] Zheng Zhang, Shuangfei Zhai, Lijun Yin, et al. Identity-
based adversarial training of deep cnns for facial action unit
recognition. In BMVC, page 226. Newcastle, 2018. 2

[46] Kaili Zhao, Wen-Sheng Chu, and Honggang Zhang. Deep
region and multi-label learning for facial action unit detec-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3391–3399, 2016. 1

10



One-Frame Calibration with Siamese Network in Facial Action Unit Recognition

Supplementary Material

A Visual Reference Guide for the
Primary AUs

See Figure S1 for a visual reference guide for the primary
AUs analyzed in this paper (the AUs included in the DISFA
and DISFA+ datasets).

B Equations for Loss Weight Com-
putation

We illustrated the method of computing the weights for the
losses in our main paper. The exact equations for computing
the weights are included in this section.

In AU intensity estimation, the weights for the MSE loss
are defined as

wi,j =
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while the weights for the cross entropy loss are defined as
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where ni,j represents the number of occurrences of the ith
AU with an intensity of j.

In AU detection, the weights for the cross entropy loss
are defined as 

wi,1 =
1

nyi≥2
1

nyi≥2
+ 1

nyi<2

wi,0 =
1

nyi<2
1

nyi≥2
+ 1

nyi<2

,
(9)

where nyi≥2 and nyi<2 represent the number of occur-
rences for yi ≥ 2 and yi < 2 respectively.

C Full Results
Tables S1 to S4 present the breakdown of the results in Ta-
ble 4 for each AU. Tables S5 to S7 present the breakdown of
the results in Table 5 for each AU. Tables S8 and S9 present
the breakdown of the results in Table 6 for each AU.
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Figure S1. A visual reference guide for the primary AUs extracted from [27].
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Metric Method AU Average1 2 4 5 6 9 12 15 17 20 25 26

ICC(3,1)↑
IR50 (NCG) .81 .76 .88 .79 .87 .87 .90 .80 .73 .60 .91 .82 .81

IR50 (OFC w/ BS) .83 .85 .87 .83 .88 .89 .90 .81 .75 .60 .94 .85 .83
CSN-IR50 (OFC) .90 .92 .88 .89 .90 .91 .92 .81 .80 .57 .94 .88 .86

MAE↓
IR50 (NCG) .48 .51 .40 .44 .29 .24 .32 .24 .42 .30 .40 .39 .37

IR50 (OFC w/ BS) .49 .42 .35 .42 .26 .21 .29 .21 .30 .26 .29 .29 .32
CSN-IR50 (OFC) .26 .22 .29 .29 .23 .18 .24 .17 .21 .21 .24 .24 .23

Table S1. The performance of different methods on AU intensity estimation on the DISFA+ dataset. For each metric, the best results in
each column are underlined.

Metric Method AU Average1 2 4 5 6 9 12 15 17 20 25 26

F1 score↑
IR50 (NCG) 71.0 63.1 84.0 63.7 85.9 51.0 84.5 64.7 58.8 49.6 74.3 56.9 67.3

IR50 (OFC w/ BS) 37.4 33.4 38.7 35.3 29.6 12.9 37.3 13.2 18.9 13.7 41.3 27.9 28.3
CSN-IR50 (OFC) 86.8 84.0 87.0 79.5 86.0 86.4 89.2 70.1 73.3 35.5 95.0 70.9 78.6

Accuracy↑
IR50 (NCG) 90.3 88.6 94.3 87.8 96.0 91.5 95.7 95.5 90.9 93.1 89.1 87.4 91.7

IR50 (OFC w/ BS) 58.1 58.1 49.1 55.6 37.9 28.9 57.0 44.4 39.4 34.4 54.2 51.8 47.4
CSN-IR50 (OFC) 96.5 96.3 95.8 94.6 96.1 98.6 97.1 97.4 96.3 93.9 98.4 93.8 96.2

Table S2. The performance of different methods on AU detection on the DISFA+ dataset. For each metric, the best results in each column
are underlined.

Metric Method AU Average4 6 7 9 10 12 20 25 26

ICC(3,1)↑
IR50 (NCG) .19 .51 .30 .32 .29 .55 .17 .28 .09 .30

IR50 (OFC w/ BS) .24 .59 .37 .32 .33 .62 .17 .31 .15 .34
CSN-IR50 (OFC) .41 .67 .49 .47 .49 .70 .14 .39 .29 .45

MAE↓
IR50 (NCG) .21 .48 .34 .12 .11 .48 .19 .33 .34 .29

IR50 (OFC w/ BS) .16 .37 .28 .12 .10 .40 .13 .26 .28 .23
CSN-IR50 (OFC) .12 .28 .27 .08 .08 .37 .11 .26 .22 .20

Table S3. The performance of different methods on AU intensity estimation on the UNBC-McMaster dataset. For each metric, the best
results in each column are underlined.

Metric Method AU Average4 6 7 9 10 12 20 25 26 43

F1 score↑
IR50 (NCG) 17.2 47.1 39.8 19.2 15.4 48.6 2.9 20.0 16.3 32.3 25.9

IR50 (OFC w/ BS) 4.0 20.6 11.4 1.9 2.1 25.8 2.8 9.3 8.7 5.1 9.2
CSN-IR50 (OFC) 36.4 56.1 39.3 22.9 24.5 62.1 5.5 39.1 26.9 29.0 34.2

Accuracy↑
IR50 (NCG) 96.5 90.1 95.8 95.9 95.4 88.3 94.8 86.7 92.7 96.5 93.3

IR50 (OFC w/ BS) 29.9 40.8 35.8 29.6 31.6 46.3 39.7 38.9 35.0 33.4 36.1
CSN-IR50 (OFC) 98.1 92.9 95.5 97.3 97.8 92.4 97.0 94.7 96.1 96.7 95.9

Table S4. The performance of different methods on AU detection on the UNBC-McMaster dataset. For each metric, the best results in each
column are underlined.

Metric Method AU Average1 2 4 5 6 9 12 15 17 20 25 26

Across-Participant ICC(3,1)↑ IR50 (NCG) .53 .45 .75 .62 .55 .57 .84 .42 .47 .24 .93 .65 .59
CSN-IR50 (OFC) .75 .70 .80 .72 .67 .61 .85 .33 .52 .37 .94 .77 .67

Within-Participant ICC(3,1)↓ IR50 (NCG) .40 .35 .66 .38 .54 .46 .83 .27 .45 .26 .93 .57 .51
CSN-IR50 (OFC) .46 .43 .70 .39 .57 .48 .85 .23 .44 .27 .93 .66 .53

Table S5. Comparison of within-participant ICC(3,1) averaged across all participants and across-participant ICC(3,1) between different
methods on AU intensity estimation on the DISFA dataset. For each metric, the better results in each column are underlined.
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Metric Method AU Average1 2 4 5 6 9 12 15 17 20 25 26

Across-Participant ICC(3,1)↑ IR50 (NCG) .81 .76 .88 .79 .87 .87 .90 .80 .73 .60 .91 .82 .81
CSN-IR50 (OFC) .90 .92 .88 .89 .90 .91 .92 .81 .80 .57 .94 .88 .86

Within-Participant ICC(3,1)↓ IR50 (NCG) .84 .85 .89 .80 .87 .89 .90 .79 .80 .61 .94 .85 .84
CSN-IR50 (OFC) .89 .91 .88 .86 .90 .91 .92 .76 .82 .57 .94 .88 .85

Table S6. Comparison of within-participant ICC(3,1) averaged across all participants and across-participant ICC(3,1) between different
methods on AU intensity estimation on the DISFA+ dataset. For each metric, the better results in each column are underlined.

Metric Method AU Average4 6 7 9 10 12 20 25 26

Across-Participant ICC(3,1)↑ IR50 (NCG) .19 .51 .30 .32 .29 .55 .17 .28 .09 .30
CSN-IR50 (OFC) .41 .67 .49 .47 .49 .70 .14 .39 .29 .45

Within-Participant ICC(3,1)↓ IR50 (NCG) .11 .53 .24 .18 .05 .50 .07 .22 .11 .22
CSN-IR50 (OFC) .18 .56 .26 .20 .08 .56 .07 .27 .13 .26

Table S7. Comparison of within-participant ICC(3,1) averaged across all participants and across-participant ICC(3,1) between different
methods on AU intensity estimation on the UNBC-McMaster dataset. For each metric, the better results in each column are underlined.

Metric Method AU Average1 2 4 5 6 9 12 15 17 20 25 26

ICC(3,1)↑

CSN-IR50-Stage1 .61 .57 .76 .60 .66 .61 .84 .26 .48 .32 .92 .71 .61
CSN-IR50-Stage2 .66 .69 .77 .59 .60 .58 .83 .32 .51 .32 .94 .77 .63
CSN-IR50-Stage3 .68 .68 .81 .67 .64 .59 .85 .36 .55 .38 .95 .74 .66
CSN-IR50-Stage4 .75 .70 .80 .72 .67 .61 .85 .33 .52 .37 .94 .77 .67

CSN-IR50-FC .57 .50 .71 .51 .57 .55 .79 .29 .40 .19 .88 .61 .55
CSN-IR50-Output .58 .49 .70 .48 .55 .54 .79 .35 .41 .21 .87 .56 .54

MAE↓

CSN-IR50-Stage1 .34 .31 .48 .13 .31 .23 .36 .24 .35 .23 .33 .41 .31
CSN-IR50-Stage2 .32 .27 .45 .14 .32 .22 .35 .21 .34 .20 .28 .34 .29
CSN-IR50-Stage3 .28 .24 .42 .11 .32 .22 .33 .19 .26 .18 .25 .32 .26
CSN-IR50-Stage4 .19 .16 .38 .08 .26 .19 .31 .17 .22 .13 .27 .27 .22

CSN-IR50-FC .28 .30 .44 .13 .31 .20 .34 .17 .28 .17 .41 .33 .28
CSN-IR50-Output .28 .29 .43 .12 .30 .20 .37 .16 .29 .19 .42 .34 .28

Table S8. The performance of different versions of CSN-IR50 on AU intensity estimation on the DISFA dataset.

Metric Method AU Average1 2 4 6 9 12 25 26

F1 score↑

CSN-IR50-Stage1 50.8 43.7 65.9 53.3 46.7 75.1 90.6 60.6 60.8
CSN-IR50-Stage2 54.0 54.7 70.5 52.3 48.4 77.2 93.4 71.5 65.2
CSN-IR50-Stage3 50.1 44.0 73.5 54.7 41.0 75.3 93.4 67.3 62.4
CSN-IR50-Stage4 65.3 58.3 70.8 52.6 51.7 77.3 94.6 65.4 67.0

CSN-IR50-FC 21.7 18.6 38.8 23.2 14.0 42.0 61.9 27.1 30.9
CSN-IR50-Output 18.8 17.8 39.1 23.0 13.5 40.7 60.5 25.8 29.9

Accuracy↑

CSN-IR50-Stage1 93.2 92.7 88.2 90.4 93.1 92.3 94.8 91.5 92.0
CSN-IR50-Stage2 93.4 95.0 89.9 90.5 94.1 93.3 96.3 94.4 93.3
CSN-IR50-Stage3 92.3 93.7 90.7 90.2 90.6 92.4 96.3 93.4 92.5
CSN-IR50-Stage4 96.9 96.9 90.4 91.7 94.6 93.5 96.9 92.8 94.2

CSN-IR50-FC 69.1 75.3 52.4 49.0 50.3 64.7 65.9 55.5 60.3
CSN-IR50-Output 62.6 74.4 53.3 48.4 49.0 62.8 63.9 53.6 58.5

Table S9. The performance of different versions of CSN-IR50 on AU detection on the DISFA dataset.
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